DM 2 : Théorème d'Ascoli et applications. A rendre le 9 avril

L'objectif de ce DM est de démontrer le théorème d'Ascoli puis d'en donner deux applications : la première fournissant un critère de compacité pour les parties des espaces $L^p(\mathbb{R}^d)$, $1 \leq p < +\infty$; et la deuxième démontrant l'existence de solutions locales pour les EDO définies par une fonction seulement supposée continue.

Soit (X, d_X) et (Y, d_Y) deux espaces métriques. On note $\mathcal{C}(X, Y)$ l'espace des fonctions continues de X dans Y, que l'on munit de la distance de la convergence uniforme.

Définition Soit (Z, d_Z) un espace métrique. Une partie $A \subset Z$ est dite **relativement compacte** si son adhérence \overline{A} est compacte. De manière équivalente, A est relativement compacte si de toute suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A, on peut en extraire une sous-suite qui converge dans Z.

Définition Soit \mathcal{F} une partie de $\mathcal{C}(X,Y)$ et $x_0 \in X$. On dit que \mathcal{F} est **équicontinue** en x_0 si :

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall f \in \mathcal{F}, \forall y \in X, d_X(x_0, y) < \alpha \Rightarrow d_Y(f(x_0), f(y)) < \varepsilon. \tag{1}$$

On dit que \mathcal{F} est équicontinue sur X si \mathcal{F} est équicontinue en tout point de X.

EXERCICE 1. C'est dans cet exercice que l'on démontre le théorème d'Ascoli :

Théorème (Ascoli). Soit (X, d_X) un espace métrique compact et (Y, d_Y) un espace métrique complet. Soit \mathcal{F} une partie de $\mathcal{C}(X, Y)$ telle que :

- 1. \mathcal{F} est équicontinue sur X,
- 2. pour tout $x \in X$ l'ensemble $\{f(x)/f \in \mathcal{F}\}$ est relativement compact dans Y.

Alors \mathcal{F} est relativement compact dans $\mathcal{C}(X,Y)$.

Soit donc (X, d_X) un espace métrique compact, et (Y, d_Y) un espace métrique complet. On rappelle qu'en tant qu'espace métrique compact, X admet une partie dénombrable dense. Invoquons dès lors une telle partie $D \subset X$.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{F} . On veut extraite de $(f_n)_{n\in\mathbb{N}}$ une sous-suite convergente.

- 1. Montrer par un argument diagonal, que l'on prendra soin de détailler, qu'il existe une soussuite $(f_{n_k})_{k\in\mathbb{N}}$ telle que pour tout $x\in D$, la suite $(f_{n_k}(x))_{k\in\mathbb{N}}$ converge.
- 2. Soit $\epsilon > 0$. Montrer qu'il existe $r \in \mathbb{N}$ et des ouverts $V_1, ..., V_r \subset X$ tels que $X = \bigcup_{i=1}^r V_i$ et tels que pour tout $i \in \{1, ..., r\}$ et pour tout $k \in \mathbb{N}$, f_{n_k} oscille au plus de ϵ sur V_i , au sens où :

$$\forall x, y \in V_i, \ d_Y(f_{n_k}(x), f_{n_k}(y)) \le \epsilon$$

3. En invoquant pour chaque $i \in \{1, ..., r\}$ un élément $x_i \in V_i \cap D$, montrer qu'il existe $N \in \mathbb{N}$ tel que pour tout $k, l \geq N$:

$$\sup_{x \in X} d_Y(f_{n_k}(x), f_{n_l}(x)) \le 3\epsilon \tag{2}$$

4. En déduire que $(f_{n_k})_{k\in\mathbb{N}}$ converge uniformément et conclure.

EXERCICE 2. Théorème de Riesz-Fréchet-Kolmogorov. Soit $d \geq 1$. Pour $f : \mathbb{R}^d \to \mathbb{R}$ et $h \in \mathbb{R}^d$, on définit τ_h par $(\tau_h f)(x) = f(x - h)$. Pour R > 0, on note B_R la boule fermé de \mathbb{R}^d de centre 0 et de rayon R. Soit $p \in [1, +\infty)$ et \mathcal{F} un ensemble borné de $L^p(\mathbb{R}^d)$. On suppose que :

$$\forall \varepsilon > 0, \forall R > 0, \exists \delta > 0, \forall f \in \mathcal{F}, |h| \le \delta \Rightarrow \|\tau_h f - f\|_{L^p(B_R)} \le \varepsilon, \tag{3}$$

et:

$$\forall \varepsilon > 0, \exists R > 0, \forall f \in \mathcal{F}, \|f\|_{L^p(B_p^c)} \le \varepsilon. \tag{4}$$

Soit $\rho \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ positive, d'intégrale 1, et de support inclus dans B_1 . Pour tout $\delta > 0$, on pose :

$$\rho_{\delta}(x) = \delta^{-d} \rho\left(\frac{x}{\delta}\right).$$

1. Soit $\varepsilon > 0$. Soit R > 0 et $\delta > 0$. Montrer que pour tout $f \in \mathcal{F}$,

$$\|\rho_{\delta} \star f - f\|_{L^{p}(B_{R})} \le \sup_{|h| \le \delta} \|\tau_{h} f - f\|_{L^{p}(B_{R})}$$
 (5)

Montrer qu'alors pour tout R > 0, il existe $\delta > 0$ tel que pour tout $f \in \mathcal{F}$:

$$\|\rho_{\delta} \star f - f\|_{L^p(B_R)} \le \varepsilon$$

- 2. Soit R > 0 et $\delta > 0$. Montrer que l'ensemble $\mathcal{F}_{R,\delta} := \{(\rho_{\delta} \star f)|_{B_R}/f \in \mathcal{F}\}$ est relativement compact dans $\mathcal{C}(B_R, \mathbb{R})$, où $(\rho_{\delta} \star f)|_{B_R}$ est la restriction de $\rho_{\delta} \star f$ à B_R .
- 3. En déduire que pour tout $\varepsilon > 0$, \mathcal{F} est recouvert par un nombre fini de boules de rayon ε .
- 4. Conclure que \mathcal{F} est relativement compact dans $L^p(\mathbb{R}^d)$.

EXERCICE 3. Théorème de Cauchy-Peano-Arzela. Dans cet exercice, on démontre l'existence de solutions locales pour les EDO x'(t) = F(t, x(t)), où la fonction F est seulement supposée continue (et donc pas forcément localement lipschitzienne par rapport à la seconde variable). C'est ce qui constitue le théorème de Cauchy-Peano-Arzela.

Soit $d \geq 1$. On invoque alors une fonction $F: \Omega \longrightarrow \mathbb{R}^d$ continue, où Ω est un ouvert de $\mathbb{R} \times \mathbb{R}^d$. On fixe aussi $(t_0, x_0) \in \Omega$, et on s'intéresse au problème de Cauchy:

$$\begin{cases} x'(t) = F(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$
 (E)

dont on cherche une solution locale x de classe C^1 . La méthode de cet exercice consiste à expliciter une suite de solutions approchées de (E) par la méthode d'Euler explicite. De cette suite, le théorème d'Ascoli nous permettra d'en extraire un sous-suite qui converge uniformément vers une fonction qui, comme on s'y attend, sera solution de (E).

Construction des solutions aprrochées par la méthode d'Euler explicite :

Soit $\delta > 0$ et R > 0 tels que $[t_0 - \delta, t_0 + \delta] \times B_R(x_0) \subset \Omega$, où $B_R(x_0)$ désigne la boule fermée de \mathbb{R}^d de centre x_0 et de rayon R. On note $M := \sup_{[t_0 - \delta, t_0 + \delta] \times B_R(x_0)} ||F||$. Enfin, on invoque $0 < \delta_0 < \delta$ tel que $\delta_0 < \frac{R}{M}$.

Soit:

$$\sigma := \{t_{-q} = t_0 - \delta_0 < \ldots < t_0 < \ldots < t_p = t_0 + \delta_0\}$$

une subdivision de l'intervalle $[t_0 - \delta_0, t_0 + \delta_0]$, où $p, q \in \mathbb{N}$. La méthode d'Euler explicite consiste à associer à cette subdivision la fonction x_{σ} définie de la manière suivante :

- On pose $x_{\sigma}(t_0) = x_0$.
- Dans le futur de t_0 : On construit récursivement x_{σ} sur chacun des intervalles $[t_i, t_{i+1}]$, où $i \geq 0$, en posant pour $t \in [t_i, t_{i+1}]$,

$$x_{\sigma}(t) := x_{\sigma}(t_i) + (t - t_i)F(t_i, x_{\sigma}(t_i))$$

— Dans le passé de t_0 : On construit récursivement x_{σ} sur chacun des intervalles $[t_{i-1}, t_i]$, où $i \leq 0$, en posant pour $t \in [t_{i-1}, t_i]$,

$$x_{\sigma}(t) := x_{\sigma}(t_i) + (t - t_i)F(t_i, x_{\sigma}(t_i))$$

On constate que x_{σ} est continue et affine par morceaux.

- 1. Montrer que pour tout $t \in [t_0 \delta_0, t_0 + \delta_0]$, $x_{\sigma}(t) \in B_R(x_0)$. Ainsi, pour chaque subdivision σ , on a $x_{\sigma} \in \mathcal{C}([t_0 \delta_0, t_0 + \delta_0]; B_R(x_0))$.
- 2. Soit $\varepsilon > 0$. Montrer que lorsque le pas :

$$h := \sup_{-q \le i < p} |t_{i+1} - t_i|$$

est assez petit, nous avons que:

$$||x'_{\sigma}(t) - F(t, x_{\sigma}(t))|| \le \varepsilon$$

en tout instant t où x_{σ} est dérivable. On dit alors que x_{σ} est une solution ε -approchée de (E).

- 3. Invoquons dès lors pour tout $n \geq 1$, une solution $\frac{1}{n}$ -approchée $x_n \in \mathcal{C}([t_0 \delta_0, t_0 + \delta_0]; B_R(x_0))$ donnée par la méthode d'Euler explicite. En utilisant le théorème d'Ascoli, montrer qu'on peut extraire de la suite $(x_n)_{n\geq 1}$ une sous-suite $(x_{n_k})_{k\geq 1}$ qui converge uniformément vers une fonction x.
- 4. En montrant que pour tout $k \ge 1$ et $t \in [t_0 \delta_0, t_0 + \delta_0]$,

$$||x_{n_k}(t) - x_0 - \int_{t_0}^t F(s, x_{n_k}(s)) ds|| \le \frac{\delta_0}{n_k},$$

démontrer que $x:[t_0-\delta_0,t_0+\delta_0]\to B_R(x_0)$ est une solution locale de (E).