TD: Analyse complexe

Légende :

- D(a,r): disque centré en a de rayon r.
- $\mathcal{H}(\Omega)$: fonctions holomorphes sur Ω .
- $\mathcal{M}(\Omega)$: fonctions méromorphes sur Ω .
- ★: exercices classiques, importants ou pouvant être adaptés en développement.

1 Séries entières

Exercice 1.

Soit $f(z) = \sum_{n \geq 0} a_n z^n$ une fonction entière telle que $f(\mathbb{R}) \subset \mathbb{R}$. Montrer que tous les a_n sont réels.

Exercice 2 (Un exemple de coupure [4]). On considère la série entière $S(z) = \sum_{n \geqslant 0} z^{2^n}$.

- 1. Montrer que S a pour rayon de convergence R=1 et que S n'est pas bornée au voisinage de 1.
- 2. En remarquant que S vérifie $S(z^2) = z + S(z)$ pour tout $z \in D(0,1)$, montrer que, s'il existe $a \in \mathbb{C}$, |a| = 1 et un voisinage V de a tels que S soit bornée sur $V \cap D(0,1)$, alors il existe également un voisinage W de a^2 tel que S soit bornée sur $W \cap D(0,1)$.
- 3. Montrer que s'il existe $a \in \mathbb{C}$, |a| = 1 et un voisinage V de a tels que S soit bornée sur $V \cap D(0,1)$, alors il existe $b \in V$ et $p \in \mathbb{N}$ tels que $b^{2^p} = 1$ et qu'alors il existe un voisinage V_p de 1 tel que S soit bornée sur $V_p \cap D(0,1)$.
- 4. En déduire que S n'est bornée au voisinage d'aucun point du cercle unité.

Exercice 3 (* Théorème de la coupure de Steinhaus [2]).

Soit f une fonction développable en série entière de rayon de convergence 1 et |z|=1, on dit que z est un point régulier s'il existe un voisinage V de z dans $\mathbb C$ et une fonction $g\in \mathcal H(V)$ telle que f=g sur $V\cap D(0,1)$. On dit que z est un point singulier sinon. On dit que $\partial D(0,1)$ est une coupure pour f si tous ses points sont singuliers. On cherche à montrer le résultat suivant :

Théorème. Soit $(\sum a_n z^n)$ une série entière de rayon de convergence 1 et $(X_n)_n$ une suite de variable aléatoire i.i.d. de loi uniforme sur [0,1] définie sur un espace de probabilité (Ω, \mathbb{P}) . Alors $\partial D(0,1)$ est presque-sûrement une coupure pour la série $(\sum a_n e^{2i\pi X_n} z^n)$.

- 1. Pour $z \in D(0,1)$, justifier que la série $(\sum a_n e^{2i\pi X_n} z^n)$ définit bien une variable aléatoire, notée f(z).
- 2. Pour $z \in D(0,1)$, justifier que

$$E(z) = \left\{ \omega \in \Omega \,, \, \overline{\lim}_{n \to \infty} \left| \frac{f^{(n)}(z)}{n!} \right|^{\frac{1}{n}} < \frac{1}{1 - |z|} \right\}$$

est un événement puis qu'on a

$$\{\Gamma_{reg} \neq \emptyset\} = \bigcup_{r \in [0,1] \cap \mathbb{Q}} \bigcup_{\theta \in [0,1] \cap \mathbb{Q}} E\left(re^{2i\pi\theta}\right)$$

où Γ_{reg} est l'ensemble des points réguliers pour la série $(\sum a_n e^{2i\pi X_n} z^n)$.

- 3. Montrer que pour tout |z|=1, E(z) est dans la tribu asymptotique des $(X_n)_n$.
- 4. Montrer que $\mathbb{P}(E(z))$ ne dépend pas de z.
- 5. Conclure que $\mathbb{P}(E(z)) = 0$ pour tout z et donc que $\Gamma_{reg} = \emptyset$ presque-sûrement.

2 Formule de Cauchy et résidus

Exercice 4.

Soit $\alpha \in \mathbb{C}$, $|\alpha| \neq 1$. En utilisant la fonction $z \mapsto \frac{1}{(z-\alpha)(z-\alpha^{-1})}$, calculer l'intégrale

$$\int_0^{2\pi} \frac{d\theta}{1 - 2\alpha\cos\theta + \alpha^2}.$$

Exercice 5.

Pour $n \ge 2$ entier, calculer

$$\int_0^{+\infty} \frac{dx}{1+x^n}.$$

Exercice 6 (Transformée de Fourier et indicatrice [3]).

On cherche à calculer $\int_{\mathbb{R}} \frac{\sin(t)}{t} e^{ixt} dt$. Soit A > 1 et γ_A le chemin $[-A, -1] \cup \mathcal{C}_- \cup [1, A]$ où \mathcal{C}_- est le demi-cercle unité inférieur, parcouru dans le sens trigo.

1. Justifier que

$$\int_{-A}^{A} \frac{\sin(t)}{t} e^{ixt} dt = \varphi_A(x+1) - \varphi_A(x-1)$$

οù

$$\varphi_A(x) = \frac{1}{2i} \int_{\gamma_A} \frac{e^{ixz}}{z} \, dz.$$

2. En complètant γ_A en un lacet de deux façons différentes, montrer que pour $x \neq 0$

$$\lim_{A \to +\infty} \varphi_A(x) = \pi \mathbf{1}_{x>0}.$$

3. Conclure.

Exercice 7 (* Séries de Laurent [3]).

Pour $0 < r_1 < r_2$ on note A l'anneau $\{z \in \mathbb{C}, r_1 < |z| < r_2\}$.

1. Soit $\varepsilon > 0$ suffisamment petit, on définit les lacets paramétrés par $t \in [0, 2\pi]$

$$\gamma_1(t) = (r_1 + \varepsilon)e^{-it}$$
 et $\gamma_2(t) = (r_2 - \varepsilon)e^{it}$.

Montrer que pour $f \in \mathcal{H}(A)$, la formule de Cauchy suivante est valide

$$\forall z \in \mathbb{C}, \ r_1 + \varepsilon < |z| < r_2 - \varepsilon, \ f(z) = \frac{1}{2i\pi} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2i\pi} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

- 2. Montrer que pour toute fonction $f \in H(A)$, il existe des fonctions f_1, f_2 telles que $f = f_1 + f_2$ où f_1 est holomorphe en dehors de $\overline{D}(0, r_1)$ et f_2 est holomorphe sur $D(0, r_2)$. Justifier que cette décomposition est unique si l'on impose $|f_1(z)| \to 0$ pour $|z| \to +\infty$.
- 3. Montrer qu'à toute fonction $f \in \mathcal{H}(A)$ on peut associer sa série de Laurent

$$\sum_{n\in\mathbb{Z}}c_nz^n$$

qui converge vers f dans A. Montrer qu'une telle série est unique et qu'elle converge uniformément sur les compacts de A.

- 4. Si f est bornée sur A, montrer que f_1 et f_2 le sont également.
- 5. On considère la fonction méromorphe

$$f(z) = \frac{1}{1 - z^2} + \frac{1}{3 - z}.$$

Dans quels domaines peut-on développer f en série de Laurent ? Donner le développement dans chacun des cas.

2

Exercice 8 (Séries de Fourier [3]).

Pour a < b on considère la bande horizontale $\Omega = \{z \in \mathbb{C}, \ a < Im(z) < b\}$. Soit $f \in \mathcal{H}(\Omega)$, on suppose que f est 1-périodique, i.e. f(z+1) = f(z) pour tout $z \in \Omega$.

1. Montrer que f possède dans Ω un développement en série de Fourier

$$f(z) = \sum_{n \in \mathbb{Z}} c_n e^{2i\pi nz}$$

où la convergence est uniforme dans toute bande $\{z \in \mathbb{C}, a + \varepsilon < Im(z) < b - \varepsilon\}, \varepsilon > 0.$

2. Donner une formule intégrale pour les coefficients c_n .

Exercice 9 (Transformée de Laplace).

Soit $d \in \mathbb{N}^*$, $A \in \mathcal{M}_d(\mathbb{C})$ et $\|\cdot\|$ une norme d'algèbre unitaire sur $\mathcal{M}_d(\mathbb{C})$.

1. Montrer que pour tout $\lambda \in \mathbb{C}$ tel que $Re(\lambda) > ||A||$, la fonction

$$\begin{vmatrix} \mathbb{R}_+ \to \mathcal{M}_d(\mathbb{C}) \\ t \mapsto e^{-\lambda t} e^{tA} \end{vmatrix}$$

est intégrable et calculer son intégrale.

2. Montrer que

$$\begin{vmatrix} \mathbb{C} \to \mathcal{M}_d(\mathbb{C}) \\ \lambda \mapsto (\lambda I_d - A)^{-1} \end{vmatrix}$$

est méromorphe avec pour ensemble de pôles le spectre de A.

- 3. Montrer que pour $|\lambda| > ||A||$, $(\lambda I_d A)^{-1}$ se développe en puissances de λ^{-1} .
- 4. Soit r>0 et Γ le cercle centré en 0 de rayon r parcouru dans le sens trigo. Montrer que pour tout $z\in\mathbb{C}$

$$e^{zA} = \frac{1}{2i\pi} \int_{\Gamma} e^{z\lambda} (\lambda I_d - A)^{-1} d\lambda.$$

3 Topologie

Exercice 10 (* Théorème de Weierstrass).

Soit Ω un ouvert de \mathbb{C} et $(f_n)_n$ une suite de $\mathcal{H}(\Omega)$. On suppose que $(f_n(z))_n$ converge pour tout $z \in \Omega$.

- 1. Montrer que la convergence est uniforme sur tout compact de Ω et que la limite définit une fonction holomorphe sur Ω .
- 2. En déduire que l'espace $\mathcal{H}(\Omega)$ muni de la topologie de la convergence uniforme sur tout compact est un espace complet.

Exercice 11 (Théorème de Hurwitz).

Soit Ω un ouvert connexe de \mathbb{C} et $(f_n)_n$ une suite de $\mathcal{H}(\Omega)$ qui converge uniformément sur tout compact de Ω vers une fonction f. On suppose que chacune des fonctions f_n est injective, montrer que f est soit injective soit constante.

Exercice 12.

Soit $\Omega \subset D(0,1)$ un ouvert connexe. On note

$$\mathcal{B}(\Omega) = \left\{ f: \Omega \to D(0,1) \,, \ f \in \mathcal{H}(\Omega) \,, f \text{ injective} \,, \ f(0) = 0 \text{ et } |f'(0)| \geqslant 1 \right\}.$$

Montrer que $\mathcal{B}(\Omega)$ est compact dans $\mathcal{H}(\Omega)$.

Exercice 13 (Partie bornées [4]).

Soit Ω un ouvert de \mathbb{C} , E une partie de $\mathcal{H}(\Omega)$. On dit que E est une partie bornée si pour tout compact $K \subset E$

$$\sup_{f \in E} ||f||_K < +\infty$$

où $\|\cdot\|_K$ désigne la norme uniforme sur K.

- 1. Montrer qu'une partie E est bornée si et seulement si pour toutes suites $(f_n)_n \subset E$ et $(\alpha_n)_n \subset \mathbb{C}$ telle que $\alpha_n \to 0$, on a $\alpha_n f_n \to 0$ uniformément sur tout compact de Ω .
- 2. Montrer que toute partie bornée E de $\mathcal{H}(\Omega)$ est équicontinue.

Exercice 14 (* Théorème de Montel [4]).

On fixe Ω un ouvert de \mathbb{C} .

- 1. Montrer que si E est une partie relativement compacte de $\mathcal{H}(\Omega)$, alors E est bornée.
- 2. Montrer que si E est bornée, alors E est relativement compacte dans $\mathcal{H}(\Omega)$.
- 3. Soit $(f_n)_n$ une suite de $\mathcal{H}(D(0,1))$, bornées par 1. On suppose qu'il existe une suite de complexes distincts $(\alpha_k)_k \subset D(0,1)$ telle que

$$\forall k \in \mathbb{N}, f_n(\alpha_k) \to 0.$$

Montrer que $(f_n)_n$ converge vers 0, uniformément sur tout compact de D(0,1).

Exercice 15.

On note D = D(0,1) et $\overline{D} = \overline{D}(0,1)$. Soit l'espace

$$A(D) = \left\{ f \in C^0(\overline{D}), \ f_{|D} \in \mathcal{H}(D) \right\}$$

muni de la norme de la convergence uniforme sur \overline{D} .

- 1. Montrer que A(D) est une algèbre de Banach. Montrer que si $f, g \in A(D)$ vérifient fg = 0 sur D, alors f ou g est identiquement nulle sur \overline{D} .
- 2. Montrer que si $f \in A(D)$ et $w \in D$, on a

$$f(w) = \frac{1}{2i\pi} \int_{\partial D} \frac{f(z)}{z - w} \, dz.$$

- 3. Montrer que si $f \in A(D)$ s'annule en tout point du cercle ∂D , f est identiquement nulle sur \overline{D} .
- 4. Soit $f \in A(D)$ et W un ouvert non vide de ∂D tel que f s'annule en tout point de W. Pour $z \in \partial D$, on note $W_z = \{w, \frac{w}{z} \in W\}$. Montrer qu'il existe des points $z_0, \dots, z_m \in \partial D$ tels que

$$\partial D = \bigcup_{p=0}^{m} W_{z_p}.$$

5. On pose

$$g(w) = \prod_{p=0}^{m} f(z_p w).$$

Montrer que, pour tout $w \in \partial D$, il existe $p \in [0, m]$ tel que $z_p w \in W$. En déduire que g = 0. Conclure qu'alors f = 0.

Exercice 16 (\star Séries de fonctions méromorphes [4]).

Pour un ouvert Ω de \mathbb{C} et $(f_n)_n$ une suite de $\mathcal{M}(\Omega)$, on dit que la série $(\sum_n f_n)$ converge normalement sur tout compact de Ω si, pour tout compact K de Ω , il existe $m \in \mathbb{N}$ tel que les $(f_n)_{n \geqslant m}$ n'ont pas de pôles dans K et la série $(\sum_{n \geqslant m} f_n)$ converge normalement sur K.

- 1. Montrer que si une série de fonctions méromorphes $(\sum_n f_n)$ converge normalement sur tout compact de Ω , alors la somme S est une fonction méromorphe sur Ω dont les pôles sont parmis ceux des fonctions f_n . Montrer qu'on a également convergence sur tout compact de la série $(\sum_n f'_n)$ vers S'.
- 2. Montrer que la série $\left(\sum_{n\in\mathbb{Z}}\frac{1}{(z-n)^2}\right)$ converge normalement sur tout compact de \mathbb{C} et que

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}, \ \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2} = \frac{\pi^2}{(\sin \pi z)^2}$$

4 Principe du maximum

Exercice 17 (* Principes du maximum et du minimum [3]).

Soit Ω un ouvert connexe de \mathbb{C} et $f \in \mathcal{H}(\Omega)$. Soit également $a \in \Omega$ et r > 0 tels que $\overline{D}(a,r) \subset \Omega$.

1. Montrer que

$$|f(a)| \leq \max_{0 \leq \theta \leq 2\pi} |f(a + re^{i\theta})|.$$

2. Si de plus f ne s'annule pas dans D(a,r), montrer que

$$|f(a)| \geqslant \min_{0 \le \theta \le 2\pi} |f(a + re^{i\theta})|.$$

Exercice 18 (Théorème de d'Alembert Gauss).

Soit $n \in \mathbb{N}$, $a_0, \dots, a_n \in \mathbb{C}$ et $P(z) = a_0 + \dots + a_n z^n$. Montrer que P a exactement n racines dans \mathbb{C} (comptées avec multiplicité).

Exercice 19.

Soit $f: \mathbb{C} \to \mathbb{C}$ entière et $A, B \in \mathbb{R}_+$, $k \in \mathbb{N}$. On suppose que $|f(z)| \leq A + B|z|^k$ pour tout $z \in \mathbb{C}$, montrer que f est un polynôme.

Exercice 20 (* Théorème d'inversion locale holomorphe [3]).

Soit Ω un ouvert connexe de \mathbb{C} , $\varphi \in \mathcal{H}(\Omega)$ et $z_0 \in \Omega$ tel que $\varphi'(z_0) \neq 0$.

1. Montrer qu'il existe un voisinage ouvert V de z_0 tel que si $z_1,z_2\in V$ alors

$$|\varphi(z_1) - \varphi(z_2)| \geqslant \frac{1}{2} |\varphi'(z_0)| |z_1 - z_2|.$$

En déduire que φ est injective sur V.

2. Soient $a \in \text{et } r > 0$ tels que $\overline{D}(a,r) \subset V$. Montrer qu'il existe une constante c > 0 telle que

$$|\varphi(a+re^{i\theta})-\varphi(a)|>c, \ \forall \theta\in[0,2\pi].$$

En déduire que $W = \varphi(V)$ est un ouvert.

3. Montrer que $\psi: W \to V$ définie par $\psi(\varphi(z)) = z$ est holomorphe sur W.

Exercice 21 (Théorème des trois cercles de Hadamard [4]).

Soient 0 < r < R et $\Delta = \{z \in \mathbb{C}, r < |z| < R\}$. Pour r < t < R et $f \in \mathcal{H}(\Delta)$ non identiquement nulle on note $M(t) = \sup_{|z|=t} |f(z)|$.

1. Justifier que $0 < M(t) < +\infty$ pour tout r < t < R. Soit $\alpha \in \mathbb{R}$, montrer que pour tous $r < t_1 < t < t_2 < R$ on a

$$t^{-\alpha}M(t) \leqslant \max\left(t_1^{-\alpha}M(t_1), t_2^{-\alpha}M(t_2)\right).$$

2. Soit $0 < \gamma < 1$, montrer qu'on a

$$M(t_1^{\gamma}t_2^{1-\gamma}) \leqslant M(t_1)^{\alpha}M(t_2)^{1-\gamma}.$$

Exercice 22 (\star Théorème de Riesz Thorin [1]). Pour $a, b, c \in \mathbb{R}$ on pose

$$\Delta_{a,b} = \{ r \in \mathbb{C}, \ a < \operatorname{Re}(z) < b \} \quad \text{et} \quad \mathcal{D}_c = \{ z \in \mathbb{C}, \ \operatorname{Re}(z) = c \}$$

- 1. Donner un exemple de fonction complexe f non bornée, continue sur $\overline{\Delta}_{0,1}$, holomorphe sur $\Delta_{0,1}$ telle que f soit bornée sur \mathcal{D}_0 et \mathcal{D}_1 .
- 2. Montrer le théorème des trois droites : si f est une fonction complexe continue et bornée sur $\overline{\Delta_{0,1}}$, holomorphe sur $\Delta_{0,1}$, alors pour tout $\theta \in [0,1]$ on a

$$\sup_{\mathcal{D}_{\theta}} |f| \leqslant \left(\sup_{\mathcal{D}_{\theta}} |f| \right)^{1-\theta} \left(\sup_{\mathcal{D}_{\theta}} |f| \right)^{\theta}.$$

3. Soient (E, μ) un espace mesuré σ -fini. Soit $p_0, p_1, q_0, q_1 \in [1, +\infty]$ et une application linéaire

$$T: L^{p_0} + L^{p_1} \to L^{q_0} + L^{q_1}$$

vérifiant $T(L^{p_i}) \subset T(L^{q_i})$, $i \in \{0,1\}$. Pour $\theta \in [0,1]$ on définit également

$$\frac{1}{p_\theta} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \quad \text{et} \quad \frac{1}{q_\theta} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.$$

- (a) Rappeler pourquoi $L^{p_{\theta}} \subset L^{p_0} + L^{p_1}$.
- (b) Soit g,h des fonctions simples mesurables sur E de support de mesure finie. Montrer qu'il existe une fonction complexe f continue et bornée sur $\overline{\Delta_{0,1}}$, holomorphe sur $\Delta_{0,1}$, telle que

$$f(\theta) = \int_{E} T(g)h \, d\mu$$

 et

$$\sup_{\mathcal{D}_0} |f| \leqslant \|T\|_{L^{p_0} \to L^{q_0}} \|g\|_{L^{p_\theta}}^{\frac{p_\theta}{p_0}} \|h\|_{L^{q_\theta'}}^{\frac{q_\theta'}{q_0'}} \quad \text{et} \quad \sup_{\mathcal{D}_1} |f| \leqslant \|T\|_{L^{p_1} \to L^{q_1}} \|g\|_{L^{p_\theta}}^{\frac{p_\theta}{p_1}} \|h\|_{L^{q_\theta'}}^{\frac{q_\theta'}{q_1'}}$$

où pour $r \ge 1$, $\frac{1}{r'} + \frac{1}{r} = 1$.

(c) En déduire que $T(L^{p_{\theta}}) \subset L^{p_{\theta}}$ et

$$||T||_{L^{p_{\theta}} \to L^{q_{\theta}}} \le (||T||_{L^{p_{0}} \to L^{q_{0}}})^{1-\theta} (||T||_{L^{p_{1}} \to L^{q_{1}}})^{\theta}$$

4. Redémontrer les inégalités de Young en utilisant ce résultat.

Références

- [1] J. Bergh, J. Löfström, Interpolation spaces.
- [2] H. Queffélec, C. Zuily, Analyse pour l'agrégation.
- [3] W. Rudin, Analyse réelle et complexe.
- [4] J. Saint Raymond, Topologie, calcul différentiel et variable complexe.